Fact Sheet: Fludeoxyglucose [18F]

Fludeoxyglucose [18F] IBA. 185 MBq/mL solution for injection.

- Half-Life: 110 min

Fludeoxyglucose [18F] is indicated for use with positron emission tomography. [18F]FDG PET is mostly used in the field of oncology. It provides highly accurate diagnosis and assessment of disease stage and therapeutic response.

We are a leading provider of PET-radiopharmaceuticals and radioisotopes for the nuclear medicine community. Our expert team ensures reliable supply of our products and the highest possible product quality. Total annual output is about 35,000 patient doses.

Product Specification

Name
Fludeoxyglucose [18F] IBA, 185 MBq/mL solution for injection

Pharmaceutical form
Solution for injection

Activity concentration
185 MBq/mL at time and date of calibration

Radiochemical purity
> 95%

pH and composition
4.5 – 8.5 // Fludeoxyglucose [18F], sodium chloride and water for injections

Storage
Store in the original package. After first use, store in a refrigerator (2–8°C)

Expiry
12 h from the time of production

Isotopes
Fluorine-18

Packaging
15 mL multi-dose colourless glass vial – type I

Availability
Monday to Friday (Saturday on special request)

Calibration
10:00 a.m., 2:00 p.m. CET (Wednesdays also 5:00 p.m.), same day

Delivery Service
Cyclotron’s cooperation partner IBA is the exclusive distributor of our [18F]FDG and other [18F]-labelled radiopharmaceuticals. IBA is the number one PET-radiopharmaceutical provider worldwide.

Fludeoxyglucose [18F] is indicated for use with positron emission tomography. [18F]FDG PET is mostly used in the field of oncology. It provides highly accurate diagnosis and assessment of disease stage and therapeutic response.

We are a leading provider of PET-radiopharmaceuticals and radioisotopes for the nuclear medicine community. Our expert team ensures reliable supply of our products and the highest possible product quality. Total annual output is about 35,000 patient doses.

**Fludeoxyglucose [18F] IBA. 185 MBq/mL solution for injection.
- Half-Life: 110 min**

Fludeoxyglucose [18F] is indicated for use with positron emission tomography. [18F]FDG PET is mostly used in the field of oncology. It provides highly accurate diagnosis and assessment of disease stage and therapeutic response.

We are a leading provider of PET-radiopharmaceuticals and radioisotopes for the nuclear medicine community. Our expert team ensures reliable supply of our products and the highest possible product quality. Total annual output is about 35,000 patient doses.

**Fludeoxyglucose [18F] IBA. 185 MBq/mL solution for injection.
- Half-Life: 110 min**

Fludeoxyglucose [18F] is indicated for use with positron emission tomography. [18F]FDG PET is mostly used in the field of oncology. It provides highly accurate diagnosis and assessment of disease stage and therapeutic response.

We are a leading provider of PET-radiopharmaceuticals and radioisotopes for the nuclear medicine community. Our expert team ensures reliable supply of our products and the highest possible product quality. Total annual output is about 35,000 patient doses.

**Fludeoxyglucose [18F] IBA. 185 MBq/mL solution for injection.
- Half-Life: 110 min**

Fludeoxyglucose [18F] is indicated for use with positron emission tomography. [18F]FDG PET is mostly used in the field of oncology. It provides highly accurate diagnosis and assessment of disease stage and therapeutic response.

We are a leading provider of PET-radiopharmaceuticals and radioisotopes for the nuclear medicine community. Our expert team ensures reliable supply of our products and the highest possible product quality. Total annual output is about 35,000 patient doses.

**Fludeoxyglucose [18F] IBA. 185 MBq/mL solution for injection.
- Half-Life: 110 min**

Fludeoxyglucose [18F] is indicated for use with positron emission tomography. [18F]FDG PET is mostly used in the field of oncology. It provides highly accurate diagnosis and assessment of disease stage and therapeutic response.

We are a leading provider of PET-radiopharmaceuticals and radioisotopes for the nuclear medicine community. Our expert team ensures reliable supply of our products and the highest possible product quality. Total annual output is about 35,000 patient doses.

**Fludeoxyglucose [18F] IBA. 185 MBq/mL solution for injection.
- Half-Life: 110 min**

Fludeoxyglucose [18F] is indicated for use with positron emission tomography. [18F]FDG PET is mostly used in the field of oncology. It provides highly accurate diagnosis and assessment of disease stage and therapeutic response.

We are a leading provider of PET-radiopharmaceuticals and radioisotopes for the nuclear medicine community. Our expert team ensures reliable supply of our products and the highest possible product quality. Total annual output is about 35,000 patient doses.

**Fludeoxyglucose [18F] IBA. 185 MBq/mL solution for injection.
- Half-Life: 110 min**

Fludeoxyglucose [18F] is indicated for use with positron emission tomography. [18F]FDG PET is mostly used in the field of oncology. It provides highly accurate diagnosis and assessment of disease stage and therapeutic response.

We are a leading provider of PET-radiopharmaceuticals and radioisotopes for the nuclear medicine community. Our expert team ensures reliable supply of our products and the highest possible product quality. Total annual output is about 35,000 patient doses.

**Fludeoxyglucose [18F] IBA. 185 MBq/mL solution for injection.
- Half-Life: 110 min**

Fludeoxyglucose [18F] is indicated for use with positron emission tomography. [18F]FDG PET is mostly used in the field of oncology. It provides highly accurate diagnosis and assessment of disease stage and therapeutic response.

We are a leading provider of PET-radiopharmaceuticals and radioisotopes for the nuclear medicine community. Our expert team ensures reliable supply of our products and the highest possible product quality. Total annual output is about 35,000 patient doses.
Decay Table

Physical half-life: 109.77 min

<table>
<thead>
<tr>
<th>Hours Min</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.000</td>
<td>0.939</td>
<td>0.881</td>
<td>0.827</td>
<td>0.777</td>
<td>0.729</td>
</tr>
<tr>
<td>1</td>
<td>0.685</td>
<td>0.643</td>
<td>0.603</td>
<td>0.567</td>
<td>0.532</td>
<td>0.499</td>
</tr>
<tr>
<td>2</td>
<td>0.469</td>
<td>0.440</td>
<td>0.413</td>
<td>0.388</td>
<td>0.364</td>
<td>0.342</td>
</tr>
<tr>
<td>3</td>
<td>0.321</td>
<td>0.301</td>
<td>0.283</td>
<td>0.266</td>
<td>0.249</td>
<td>0.234</td>
</tr>
<tr>
<td>4</td>
<td>0.220</td>
<td>0.206</td>
<td>0.194</td>
<td>0.182</td>
<td>0.171</td>
<td>0.160</td>
</tr>
<tr>
<td>5</td>
<td>0.150</td>
<td>0.141</td>
<td>0.133</td>
<td>0.125</td>
<td>0.117</td>
<td>0.110</td>
</tr>
<tr>
<td>6</td>
<td>0.103</td>
<td>0.097</td>
<td>0.091</td>
<td>0.085</td>
<td>0.080</td>
<td>0.075</td>
</tr>
</tbody>
</table>

To obtain a precalibration number, divide by the decay factor. For a postcalibration number, multiply by the decay factor.

More Information